66 research outputs found

    The role of eco-evolutionary experience in invasion success

    Get PDF
    Invasion ecology has made considerable progress in identifying specific mechanisms that potentially determine success and failure of biological invasions. Increasingly, efforts are being made to interrelate or even synthesize the growing number of hypotheses in order to gain a more comprehensive and integrative understanding of invasions. We argue that adopting an eco-evolutionary perspective on invasions is a promising approach to achieve such integration. It emphasizes the evolutionary antecedents of invasions, i.e. the species’ evolutionary legacy and its role in shaping novel biotic interactions that arise due to invasions. We present a conceptual framework consisting of five hypothetical scenarios about the influence of so-called ‘eco-evolutionary experience’ in resident native and invading non-native species on invasion success, depending on the type of ecological interaction (predation, competition, mutualism, and commensalism). We show that several major ecological invasion hypotheses, including ‘enemy release’, ‘EICA’, ‘novel weapons’, ‘naive prey’, ‘new associations’, ‘missed mutualisms’ and ‘Darwin’s naturalization hypothesis’ can be integrated into this framework by uncovering their shared implicit reference to the concept of eco-evolutionary experience. We draft a routine for the assessment of eco-evolutionary experience in native and non-native species using a food web-based example and propose two indices (xpFocal index and xpResidents index) for the actual quantification of eco-evolutionary experience. Our study emphasizes the explanatory potential of an eco-evolutionary perspective on biological invasions

    Species from different taxonomic groups show similar invasion traits

    Get PDF
    Invasion ecology tends to treat taxonomic groups separately. However, given that all invasive species go through the same stages of the invasion process (transport, escape, establishment, spread), it is likely that – across taxa – comparable traits help to successfully complete this process ("invasion traits"). Perhaps not all invasive species have the same invasion traits, but different combinations of invasion traits can be found among invaders, corresponding to different possibilities to become a successful invader. These combinations of invasion traits might be linked to taxonomic affiliation, but this is not necessarily the case. We created a global dataset with 201 invasive species from seven major taxonomic groups (animals, green plants, fungi, heterokonts, bacteria, red algae, alveolates) and 13 invasion traits that are applicable across all taxa. The dataset was analysed with cluster analysis to search for similarities in combinations of invasion traits. Three of the five clusters, comprising 60% of all species, contain several major taxonomic groups. While some invasion trait frequencies were significantly related to taxonomic affiliation, the results show that invasive species from different taxonomic groups often share similar combinations of invasion traits. A post-hoc analysis suggests that combinations of traits characterizing successful invaders can be associated with invasion stages across taxa. Our findings suggest that there are no universal invasion traits which could explain the invasion success of all invaders, but that invaders are successful for different reasons which are represented by different combinations of invasion traits across taxonomic groups

    Socio‐economic impact classification of alien taxa (SEICAT)

    Get PDF
    1 Many alien taxa are known to cause socio‐economic impacts by affecting the different constituents of human well‐being (security; material and non‐material assets; health; social, spiritual and cultural relations; freedom of choice and action). Attempts to quantify socio‐economic impacts in monetary terms are unlikely to provide a useful basis for evaluating and comparing impacts of alien taxa because they are notoriously difficult to measure and important aspects of human well‐being are ignored. 2 Here, we propose a novel standardised method for classifying alien taxa in terms of the magnitude of their impacts on human well‐being, based on the capability approach from welfare economics. The core characteristic of this approach is that it uses changes in peoples' activities as a common metric for evaluating impacts on well‐being. 2 Impacts are assigned to one of five levels, from Minimal Concern to Massive, according to semi‐quantitative scenarios that describe the severity of the impacts. Taxa are then classified according to the highest level of deleterious impact that they have been recorded to cause on any constituent of human well‐being. The scheme also includes categories for taxa that are not evaluated, have no alien population, or are data deficient, and a method for assigning uncertainty to all the classifications. To demonstrate the utility of the system, we classified impacts of amphibians globally. These showed a variety of impacts on human well‐being, with the cane toad (Rhinella marina) scoring Major impacts. For most species, however, no studies reporting impacts on human well‐being were found, i.e. these species were data deficient. 2 The classification provides a consistent procedure for translating the broad range of measures and types of impact into ranked levels of socio‐economic impact, assigns alien taxa on the basis of the best available evidence of their documented deleterious impacts, and is applicable across taxa and at a range of spatial scales. The system was designed to align closely with the Environmental Impact Classification for Alien Taxa (EICAT) and the Red List, both of which have been adopted by the International Union of Nature Conservation (IUCN), and could therefore be readily integrated into international practices and policies

    Consistency of impact assessment protocols for non-native species

    Get PDF
    Standardized tools are needed to identify and prioritize the most harmful non-native species (NNS). A plethora of assessment protocols have been developed to evaluate the current and potential impacts of non-native species, but consistency among them has received limited attention. To estimate the consistency across impact assessment protocols, 89 specialists in biological invasions used 11 protocols to screen 57 NNS (2614 assessments). We tested if the consistency in the impact scoring across assessors, quantified as the coefficient of variation (CV), was dependent on the characteristics of the protocol, the taxonomic group and the expertise of the assessor. Mean CV across assessors was 40%, with a maximum of 223%. CV was lower for protocols with a low number of score levels, which demanded high levels of expertise, and when the assessors had greater expertise on the assessed species. The similarity among protocols with respect to the final scores was higher when the protocols considered the same impact types. We conclude that all protocols led to considerable inconsistency among assessors. In order to improve consistency, we highlight the importance of selecting assessors with high expertise, providing clear guidelines and adequate training but also deriving final decisions collaboratively by consensus

    European scenarios for future biological invasions

    Get PDF
    1. Invasive alien species are one of the major threats to global biodiversity, ecosystem integrity, nature's contributions to people and human health. While scenarios about potential future developments have been available for other global change drivers for quite some time, we largely lack an understanding of how biological invasions might unfold in the future across spatial scales. 2. Based on previous work on global invasion scenarios, we developed a workflow to downscale global scenarios to a regional and policy-relevant context. We applied this workflow at the European scale to create four European scenarios of biological invasions until 2050 that consider different environmental, socio-economic and socio-cultural trajectories, namely the European Alien Species Narratives (Eur-ASNs). 3. We compared the Eur-ASNs with their previously published global counterparts (Global-ASNs), assessing changes in 26 scenario variables. This assessment showed a high consistency between global and European scenarios in the logic and assumptions of the scenario variables. However, several discrepancies in scenario variable trends were detected that could be attributed to scale differences. This suggests that the workflow is able to capture scale-dependent differences across scenarios. 4. We also compared the Global- and Eur-ASNs with the widely used Global and European Shared Socioeconomic Pathways (SSPs), a set of scenarios developed in the context of climate change to capture different future socio-economic trends. Our comparison showed considerable divergences in the scenario space occupied by the different scenarios, with overall larger differences between the ASNs and SSPs than across scales (global vs. European) within the scenario initiatives. 5. Given the differences between the ASNs and SSPs, it seems that the SSPs do not adequately capture the scenario space relevant to understanding the complex future of biological invasions. This underlines the importance of developing independent but complementary scenarios focussed on biological invasions. The downscaling workflow we implemented and presented here provides a tool to develop such scenarios across different regions and contexts. This is a major step towards an improved understanding of all major drivers of global change, including biological invasions

    The EICAT+ framework enables classification of positive impacts of alien taxa on native biodiversity

    Get PDF
    Species introduced through human-related activities beyond their native range, termed alien species, have various impacts worldwide. The IUCN Environmental Impact Classification for Alien Taxa (EICAT) is a global standard to assess negative impacts of alien species on native biodiversity. Alien species can also positively affect biodiversity (for instance, through food and habitat provisioning or dispersal facilitation) but there is currently no standardized and evidence-based system to classify positive impacts. We fill this gap by proposing EICAT+, which uses 5 semiquantitative scenarios to categorize the magnitude of positive impacts, and describes underlying mechanisms. EICAT+ can be applied to all alien taxa at different spatial and organizational scales. The application of EICAT+ expands our understanding of the consequences of biological invasions and can inform conservation decisions

    Scientific and normative foundations for the valuation of alien-species impacts: thirteen core principles

    Get PDF
    Biological invasions cause many impacts that differ widely in how they are perceived. We argue that many conflicts in the valuation of the impacts of alien species are attributable to differences in the framing of the issue and implicit assumptions—such conflicts are often not acknowledged. We present 13 principles that can help guide valuation and therefore inform the management of alien species. Seven of these relate to the science domain, representing aspects of change caused by alien species that can be measured or otherwise assessed using scientific methods. The remaining six principles invoke values, risk perception, and environmental ethics, but also cognitive and motivational decision biases. We illustrate the consequences of insufficient appreciation of these principles. Finally, we provide guidance rooted in political agreements and environmental ethics for improving the consideration of the consequences of these principles and present appropriate tools for management decisions relating to alien species

    Assessing patterns in introduction pathways of alien species by linking major invasion data bases

    Get PDF
    1. Preventing the arrival of invasive alien species (IAS) is a major priority in managing biological invasions. However, information on introduction pathways is currently scattered across many data bases that often use different categorisations to describe similar pathways. This hampers the identification and prioritisation of pathways to meet the main targets of recent environmental policies. 2. Therefore, we integrate pathway information from two major IAS data bases, IUCN's Global Invasive Species Database (GISD) and the DAISIE European Invasive Alien Species Gateway, applying the new standard categorisation scheme recently adopted by the Convention on Biological Diversity (CBD). We describe the process of mapping pathways from the individual data bases to the CBD scheme and provide, for the first time, detailed descriptions of the standard pathway categories. The combined data set includes pathway information for 8323 species across major taxonomic groups (plants, vertebrates, invertebrates, algae, fungi, other) and environments (terrestrial, freshwater, marine). 3. We analyse the data for major patterns in the introduction pathways, highlighting that the specific research question and context determines whether the combined or an individual data set is the better information source for such analyses. While the combined data set provides an improved basis for direction-setting in invasion management policies on the global level, individual data sets often better reflect regional idiosyncrasies. The combined data set should thus be considered in addition to, rather than replacing, existing individual data sets. 4.Pathway patterns derived from the combined and individual data sets show that the intentional pathways ‘Escape’ and ‘Release’ are most important for plants and vertebrates, while for invertebrates, algae, fungi and micro-organisms unintentional transport pathways prevail. Differences in pathway proportions among marine, freshwater and terrestrial environments are much less pronounced. The results also show that IAS with highest impacts in Europe are on average associated with a greater number of pathways than other alien species and are more frequently introduced both intentionally and unintentionally. 5. Synthesis and applications. Linking data bases on invasive alien species by harmonising and consolidating their pathway information is essential to turn dispersed data into useful knowledge. The standard pathway categorisation scheme recently adopted by the Convention on Biological Diversity may be crucial to facilitate this process. Our study demonstrates the value of integrating major invasion data bases to help managers and policymakers reach robust conclusions about patterns in introduction pathways and thus aid effective prevention and prioritisation in invasion management

    Socio-economic impact classification of alien taxa (SEICAT)

    Get PDF
    Many alien taxa are known to cause socio-economic impacts by affecting the different constituents of human well-being (security; material and non-material assets; health; social, spiritual and cultural relations; freedom of choice and action). Attempts to quantify socio-economic impacts in monetary terms are unlikely to provide a useful basis for evaluating and comparing impacts of alien taxa because they are notoriously difficult to measure and important aspects of human well-being are ignored.Here, we propose a novel standardised method for classifying alien taxa in terms of the magnitude of their impacts on human well-being, based on the capability approach from welfare economics. The core characteristic of this approach is that it uses changes in peoples' activities as a common metric for evaluating impacts on well-being.Impacts are assigned to one of five levels, from Minimal Concern to Massive, according to semi-quantitative scenarios that describe the severity of the impacts. Taxa are then classified according to the highest level of deleterious impact that they have been recorded to cause on any constituent of human well-being. The scheme also includes categories for taxa that are not evaluated, have no alien population, or are data deficient, and a method for assigning uncertainty to all the classifications. To demonstrate the utility of the system, we classified impacts of amphibians globally. These showed a variety of impacts on human well-being, with the cane toad (Rhinella marina) scoring Major impacts. For most species, however, no studies reporting impacts on human well-being were found, i.e. these species were data deficient.The classification provides a consistent procedure for translating the broad range of measures and types of impact into ranked levels of socio-economic impact, assigns alien taxa on the basis of the best available evidence of their documented deleterious impacts, and is applicable across taxa and at a range of spatial scales. The system was designed to align closely with the Environmental Impact Classification for Alien Taxa (EICAT) and the Red List, both of which have been adopted by the International Union of Nature Conservation (IUCN), and could therefore be readily integrated into international practices and policies

    European scenarios for future biological invasions

    Get PDF
    1. Invasive alien species are one of the major threats to global biodiversity, ecosystem integrity, nature's contributions to people and human health. While scenarios about potential future developments have been available for other global change drivers for quite some time, we largely lack an understanding of how biological invasions might unfold in the future across spatial scales. 2. Based on previous work on global invasion scenarios, we developed a workflow to downscale global scenarios to a regional and policy-relevant context. We applied this workflow at the European scale to create four European scenarios of biological invasions until 2050 that consider different environmental, socio-economic and socio-cultural trajectories, namely the European Alien Species Narratives (Eur-ASNs). 3. We compared the Eur-ASNs with their previously published global counterparts (Global-ASNs), assessing changes in 26 scenario variables. This assessment showed a high consistency between global and European scenarios in the logic and assumptions of the scenario variables. However, several discrepancies in scenario variable trends were detected that could be attributed to scale differences. This suggests that the workflow is able to capture scale-dependent differences across scenarios. 4. We also compared the Global- and Eur-ASNs with the widely used Global and European Shared Socioeconomic Pathways (SSPs), a set of scenarios developed in the context of climate change to capture different future socio-economic trends. Our comparison showed considerable divergences in the scenario space occupied by the different scenarios, with overall larger differences between the ASNs and SSPs than across scales (global vs. European) within the scenario initiatives. 5. Given the differences between the ASNs and SSPs, it seems that the SSPs do not adequately capture the scenario space relevant to understanding the complex future of biological invasions. This underlines the importance of developing independent but complementary scenarios focussed on biological invasions. The downscaling workflow we implemented and presented here provides a tool to develop such scenarios across different regions and contexts. This is a major step towards an improved understanding of all major drivers of global change, including biological invasions
    • 

    corecore